Embedded Factor Patterns for Deodhar Elements in Kazhdan-Lusztig Theory
نویسندگان
چکیده
The Kazhdan-Lusztig polynomials for finite Weyl groups arise in the geometry of Schubert varieties and representation theory. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar [16] has given a framework for computing the Kazhdan-Lusztig polynomials which generally involves recursion. We define embedded factor pattern avoidance for general Coxeter groups and use it to characterize when Deodhar’s algorithm yields a simple combinatorial formula for the Kazhdan-Lusztig polynomials of finite Weyl groups. Equivalently, if (W, S) is a Coxeter system for a finite Weyl group, we classify the elements w ∈W for which the Kazhdan-Lusztig basis element C w can be written as a monomial of C ′ s where s ∈ S. This work generalizes results of Billey-Warrington [8] that identified the Deodhar elements in type A as 321-hexagon-avoiding permutations, and Fan-Green [18] that identified the fully-tight Coxeter groups.
منابع مشابه
Leading Coefficients of Kazhdan–lusztig Polynomials for Deodhar Elements
We show that the leading coefficient of the Kazhdan–Lusztig polynomial Px,w(q) known as μ(x,w) is always either 0 or 1 when w is a Deodhar element of a finite Weyl group. The Deodhar elements have previously been characterized using pattern avoidance in [BW01] and [BJ07]. In type A, these elements are precisely the 321-hexagon avoiding permutations. Using Deodhar’s algorithm [Deo90], we provide...
متن کاملDeodhar Elements in Kazhdan-Lusztig Theory
The Kazhdan-Lusztig polynomials for finite Weyl groups arise in representation theory as well as the geometry of Schubert varieties. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar has given a framework, which generally involves recursion, to express the Kazhdan-Lusz...
متن کاملSpecial matchings and Kazhdan-Lusztig polynomials
In 1979 Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements ofW , which have become known as the Kazhdan-Lusztig polynomials of W , and which have proven to be of importance in several areas of mathematics. In this paper we show that the combinatorial concept of a special matching plays a fundamental role in the computation of these pol...
متن کاملKazhdan-Lusztig Polynomials for 321-Hexagon-Avoiding Permutations
In (Deodhar, Geom. Dedicata, 36(1) (1990), 95–119), Deodhar proposes a combinatorial framework for determining the Kazhdan-Lusztig polynomials Px,w in the case where W is any Coxeter group. We explicitly describe the combinatorics in the case where W = Sn (the symmetric group on n letters) and the permutation w is 321-hexagon-avoiding. Our formula can be expressed in terms of a simple statistic...
متن کاملKazhdan–Lusztig polynomials of boolean elements
We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic analogue of type q in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan numbers and use a combinatorial interpretation of the Coxeter graph of th...
متن کامل